Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3525, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664445

RESUMEN

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.


Asunto(s)
Hidrogeles , Ratones Transgénicos , Optogenética , Polímeros , Alcohol Polivinílico , Animales , Alcohol Polivinílico/química , Ratones , Hidrogeles/química , Optogenética/métodos , Polímeros/química , Nanotubos de Carbono/química , Área Tegmental Ventral/fisiología , Microelectrodos , Masculino , Channelrhodopsins/metabolismo , Channelrhodopsins/química , Channelrhodopsins/genética
2.
Front Plant Sci ; 15: 1310346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444537

RESUMEN

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

3.
Sci Adv ; 9(50): eadj0411, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091402

RESUMEN

Strain-induced crystallization (SIC) prevalently strengthens, toughens, and enables an elastocaloric effect in elastomers. However, the crystallinity induced by mechanical stretching in common elastomers (e.g., natural rubber) is typically below 20%, and the stretchability plateaus due to trapped entanglements. We report a class of elastomers formed by end-linking and then deswelling star polymers with low defects and no trapped entanglements, which achieve strain-induced crystallinity of up to 50%. The deswollen end-linked star elastomer (DELSE) reaches an ultrahigh stretchability of 12.4 to 33.3, scaling beyond the saturated limit of common elastomers. The DELSE also exhibits a high fracture energy of 4.2 to 4.5 kJ m-2 while maintaining low hysteresis. The heightened SIC and stretchability synergistically promote a high elastocaloric effect with an adiabatic temperature change of 9.3°C.

4.
Nat Methods ; 20(11): 1802-1809, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857906

RESUMEN

We develop soft and stretchable fatigue-resistant hydrogel optical fibers that enable optogenetic modulation of peripheral nerves in naturally behaving animals during persistent locomotion. The formation of polymeric nanocrystalline domains within the hydrogels yields fibers with low optical losses of 1.07 dB cm-1, Young's modulus of 1.6 MPa, stretchability of 200% and fatigue strength of 1.4 MPa against 30,000 stretch cycles. The hydrogel fibers permitted light delivery to the sciatic nerve, optogenetically activating hindlimb muscles in Thy1::ChR2 mice during 6-week voluntary wheel running assays while experiencing repeated deformation. The fibers additionally enabled optical inhibition of pain hypersensitivity in an inflammatory model in TRPV1::NpHR mice over an 8-week period. Our hydrogel fibers offer a motion-adaptable and robust solution to peripheral nerve optogenetics, facilitating the investigation of somatosensation.


Asunto(s)
Fibras Ópticas , Optogenética , Ratones , Animales , Hidrogeles , Actividad Motora , Nervio Ciático/fisiología , Locomoción
5.
Proc Natl Acad Sci U S A ; 120(45): e2312751120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903260

RESUMEN

We report in this work several unexpected experimental observations on evaporation from hydrogels under visible light illumination. 1) Partially wetted hydrogels become absorbing in the visible spectral range, where the absorption by both the water and the hydrogel materials is negligible. 2) Illumination of hydrogel under solar or visible-spectrum light-emitting diode leads to evaporation rates exceeding the thermal evaporation limit, even in hydrogels without additional absorbers. 3) The evaporation rates are wavelength dependent, peaking at 520 nm. 4) Temperature of the vapor phase becomes cooler under light illumination and shows a flat region due to breaking-up of the clusters that saturates air. And 5) vapor phase transmission spectra under light show new features and peak shifts. We interpret these observations by introducing the hypothesis that photons in the visible spectrum can cleave water clusters off surfaces due to large electrical field gradients and quadrupole force on molecular clusters. We call the light-induced evaporation process the photomolecular effect. The photomolecular evaporation might be happening widely in nature, potentially impacting climate and plants' growth, and can be exploited for clean water and energy technologies.

6.
Res Sq ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214970

RESUMEN

Bioelectronic devices made of soft elastic materials exhibit motion-adaptive properties suitable for brain-machine interfaces and for investigating complex neural circuits. While two-dimensional microfabrication strategies enable miniaturizing devices to access delicate nerve structures, creating 3D architecture for expansive implementation requires more accessible and scalable manufacturing approaches. Here we present a fabrication strategy through the control of metamorphic polymers' amorphous-crystalline transition (COMPACT), for hydrogel bioelectronics with miniaturized fiber shape and multifunctional interrogation of neural circuits. By introducing multiple cross-linkers, acidification treatment, and oriented polymeric crystalline growth under deformation, we observed about an 80% diameter decrease in chemically cross-linked polyvinyl alcohol (PVA) hydrogel fibers, stably maintained in a fully hydrated state. We revealed that the addition of cross-linkers and acidification facilitated the oriented polymetric crystalline growth under mechanical stretching, which contributed to the desired hydrogel fiber diameter decrease. Our approach enabled the control of hydrogels' properties, including refractive index (RI 1.37-1.40 at 480 nm), light transmission (> 96%), stretchability (95% - 111%), and elastic modulus (10-63 MPa). To exploit these properties, we fabricated step-index hydrogel optical probes with contrasting RIs and applied them in optogenetics and photometric recordings in the mouse brain region of the ventral tegmental area (VTA) with concurrent social behavioral assessment. To extend COMPACT hydrogel multifunctional scaffolds to assimilate conductive nanomaterials and integrate multiple components of optical waveguide and electrodes, we developed carbon nanotubes (CNTs)-PVA hydrogel microelectrodes for hindlimb muscle electromyographic and brain electrophysiological recordings of light-triggered neural activities in transgenic mice expressing Channelrhodopsin-2 (ChR2).

7.
Adv Mater ; 35(22): e2211763, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36921061

RESUMEN

Water vapor sorption is a ubiquitous phenomenon in nature and plays an important role in various applications, including humidity regulation, energy storage, thermal management, and water harvesting. In particular, capturing moisture at elevated temperatures is highly desirable to prevent dehydration and to enlarge the tunability of water uptake. However, owing to the thermodynamic limit of conventional materials, sorbents inevitably tend to capture less water vapor at higher temperatures, impeding their broad applications. Here, an inverse temperature dependence of water sorption in poly(ethylene glycol) (PEG) hydrogels, where their water uptake can be doubled with increasing temperature from 25 to 50 °C, is reported. With mechanistic modeling of water-polymer interactions, this unusual water sorption is attributed to the first-order phase transformation of PEG structures, and the key parameters for a more generalized strategy in materials development are identified. This work elucidates a new regime of water sorption with an unusual temperature dependence, enabling a promising engineering space for harnessing moisture and heat.

8.
Phys Rev E ; 107(2): L022601, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932538

RESUMEN

Intense surface eruptions are observed along the curved surface of a confined cylindrical film of hydrogel subject to laser-induced converging-diverging shock loading. Detailed numerical simulations are used to identify the dominant mechanisms causing mechanical instability. The mechanisms that produce surface instability are found to be fundamentally different from both acoustic parametric instability and shock-driven Richtmyer-Meshkov instability. The time scale of observed and simulated eruption formation is much larger than that of a single shock reflection, in stark contrast to previously studied shock-driven instabilities. Moreover, surface undulations are only found along external, as opposed to internal, soft solid boundaries. Specifically, classic bubble surface instability mechanisms do not occur in our experiments and here we comment only on the new surface undulations found along the outer boundary of solid hydrogel cylinders. Our findings indicate a new class of impulsively excited surface instability that is driven by cycles of internal shock reflections.

9.
Plant J ; 114(2): 279-292, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738107

RESUMEN

Terrestrial plants emit volatiles into the atmosphere to attract both pollinators and the enemies of herbivores, for defense. Phalaenopsis bellina is a scented orchid species in which the main scent components are monoterpenes, including linalool and geraniol, and their derivatives. Here, we investigated whether ABC transporters are involved in floral scent emission. We carried out whole-genome identification of ABC transporter-related genes using four floral transcriptomics libraries of P. bellina. We identified 86 ABC subfamily G genes related to terpenoid transport. After comparing the gene expression patterns of P. bellina with that of Phalaenopsis aphrodite subsp. formosana, a scentless species, followed by gene-to-gene correlation analysis, PbABCG1 and PbABCG2 were selected. The temporal expression of both PbABCG1 and PbABCG2 was highly correlated with that of the key enzyme PbGDPS and the major transcription factor PbbHLH4 in monoterpene biosynthesis, with optimal expression on day 5 post-anthesis. Spatial gene expression analysis showed that PbABCG1 was highly expressed in sepals, whereas PbABCG2 was expressed in the lip. Subcellular localization with a GFP fusion protein revealed that both PbABCG1 and PbABCG2 are cytoplasmic membrane proteins. Co-downregulation of PbABCG1 and PbABCG2 using both double-strand RNA interference and tobacco rattle virus-based gene silencing led to a significant decrease in monoterpene emission, accompanied by an increase in the internal monoterpene pools. Furthermore, ectopic expression of PbABCG1 and PbABCG2 in an ABC16- mutant yeast strain rescued its tolerance to geraniol. Altogether, our results indicate that PbABCG1 and PbABCG2 play substantial roles in monoterpene transport/emission in P. bellina floral scent.


Asunto(s)
Monoterpenos , Orchidaceae , Monoterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Orchidaceae/genética
10.
Nat Biomed Eng ; 7(4): 589-598, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34400808

RESUMEN

Neuroprosthetic hands are typically heavy (over 400 g) and expensive (more than US$10,000), and lack the compliance and tactile feedback of human hands. Here, we report the design, fabrication and performance of a soft, low-cost and lightweight (292 g) neuroprosthetic hand that provides simultaneous myoelectric control and tactile feedback. The neuroprosthesis has six active degrees of freedom under pneumatic actuation, can be controlled through the input from four electromyography sensors that measure surface signals from residual forearm muscles, and integrates five elastomeric capacitive sensors on the fingertips to measure touch pressure so as to enable tactile feedback by eliciting electrical stimulation on the skin of the residual limb. In a set of standardized tests performed by two individuals with transradial amputations, we show that the soft neuroprosthetic hand outperforms a conventional rigid neuroprosthetic hand in speed and dexterity. We also show that one individual with a transradial amputation wearing the soft neuroprosthetic hand can regain primitive touch sensation and real-time closed-loop control.


Asunto(s)
Miembros Artificiales , Tacto , Humanos , Tacto/fisiología , Retroalimentación , Retroalimentación Sensorial/fisiología , Mano/fisiología
11.
BMC Plant Biol ; 22(1): 557, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36456919

RESUMEN

Containing the largest number of species, the orchid family provides not only materials for studying plant evolution and environmental adaptation, but economically and culturally important ornamental plants for human society. Previously, we collected genome and transcriptome information of Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica which belong to two different subfamilies of Orchidaceae, and developed user-friendly tools to explore the orchid genetic sequences in the OrchidBase 4.0. The OrchidBase 4.0 offers the opportunity for plant science community to compare orchid genomes and transcriptomes and retrieve orchid sequences for further study.In the year 2022, two whole-genome sequences of Orchidoideae species, Platanthera zijinensis and Platanthera guangdongensis, were de novo sequenced, assembled and analyzed. In addition, systemic transcriptomes from these two species were also established. Therefore, we included these datasets to develop the new version of OrchidBase 5.0. In addition, three new functions including synteny, gene order, and miRNA information were also developed for orchid genome comparisons and miRNA characterization.OrchidBase 5.0 extended the genetic information to three orchid subfamilies (including five orchid species) and provided new tools for orchid researchers to analyze orchid genomes and transcriptomes. The online resources can be accessed at https://cosbi.ee.ncku.edu.tw/orchidbase5/.


Asunto(s)
MicroARNs , Orchidaceae , Orden Génico , Bases del Conocimiento , MicroARNs/genética , Orchidaceae/genética , Sintenía
12.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36236395

RESUMEN

Driving is a ubiquitous activity that requires both motor skills and cognitive focus. These aspects become more problematic for some seniors, who have underlining medical conditions and tend to lose some of these capabilities. Therefore, driving can be used as a controlled environment for the frequent, non-intrusive monitoring of bio-physical and cognitive status within drivers. Such information can then be utilized for enhanced assistive vehicle controls and/or driver health monitoring. In this paper, we present a novel multi-modal smart steering sleeve (S3) system with an integrated sensing platform that can non-intrusively and continuously measure a driver's physiological signals, including electrodermal activity (EDA), electromyography (EMG), and hand pressure. The sensor suite was developed by combining low-cost interdigitated electrodes with a piezoresistive force sensor on a single, flexible polymer substrate. Comprehensive characterizations on the sensing modalities were performed with promising results demonstrated. The sweat-sensing unit (SSU) for EDA monitoring works under a 100 Hz alternative current (AC) source. The EMG signal acquired by the EMG-sensing unit (EMGSU) was amplified to within 5 V. The force-sensing unit (FSU) for hand pressure detection has a range of 25 N. This flexible sensor was mounted on an off-the-shelf steering wheel sleeve, making it an add-on system that can be installed on any existing vehicles for convenient and wide-coverage driver monitoring. A cloud-based communication scheme was developed for the ease of data collection and analysis. Sensing platform development, performance, and limitations, as well as other potential applications, are discussed in detail in this paper.


Asunto(s)
Conducción de Automóvil , Conducción de Automóvil/psicología , Recolección de Datos , Monitoreo Fisiológico , Sudor
13.
Soft Matter ; 18(31): 5742-5749, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35792010

RESUMEN

Soft yet tough materials are ubiquitous in nature and everyday life. The ratio between fracture toughness and intrinsic fracture energy of a soft material defines its toughness enhancement. Soft materials' toughness enhancement has been long attributed to their bulk stress-stretch hysteresis induced by dissipation mechanisms such as Mullins effect and viscoelasticity. With a combination of experiments and theory, here we show that the bulk dissipation mechanisms significantly underestimate the toughness enhancement of soft tough materials. We propose a new mechanism and scaling law to account for extreme toughening of diverse soft materials. We show that the toughness enhancement of soft materials relies on both bulk hysteretic dissipation, and near-crack dissipation due to mechanisms such as polymer-chain entanglement. Unlike the bulk hysteretic dissipation, the near-crack dissipation does not necessarily induce large stress-stretch hysteresis of the bulk material. The extreme toughening mechanism can be potentially universally applied to various soft tough materials, ranging from double-network hydrogels, interpenetrating-network hydrogels, entangled-network hydrogels and slide-ring hydrogels, to unfilled and filled rubbers.

14.
15.
Adv Mater ; 34(8): e2107106, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34888962

RESUMEN

Engineering conventional hydrogels with muscle-like anisotropic structures can efficiently increase the fatigue threshold over 1000 J m-2 along the alignment direction; however, the fatigue threshold perpendicular to the alignment is still as low as ≈100-300 J m-2 , making them nonsuitable for those scenarios where isotropic properties are desired. Here, inspired by the distinct structure-properties relationship of heart valves, a simple yet general strategy to engineer conventional hydrogels with unprecedented yet isotropic fatigue resistance, with a record-high fatigue threshold over 1,500 J m-2 along two arbitrary in-plane directions is reported. The two-step process involves the formation of preferentially aligned lamellar micro/nanostructures through a bidirectional freeze-casting process, followed by compression annealing, synergistically contributing to extraordinary resistance to fatigue crack propagation. The study provides a viable means of fabricating soft materials with isotropically extreme properties, thereby unlocking paths to apply these advanced soft materials toward applications including soft robotics, flexible electronics, e-skins, and tissue patches.


Asunto(s)
Electrónica , Hidrogeles , Hidrogeles/química
16.
Commun Chem ; 5(1): 110, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36697794

RESUMEN

Sporopollenin is a mechanically robust and chemically inert biopolymer that constitutes the outer protective exine layer of plant spores and pollen grains. Recent investigation of the molecular structure of pine sporopollenin revealed unique monomeric units and inter-unit linkages distinct from other previously known biopolymers, which could be harnessed for new material design. Herein, we report the bioinspired synthesis of a series of sporopollenin analogues. This exercise confirms large portions of our previously proposed pine sporopollenin structural model, while the measured chemical, thermal, and mechanical properties of the synthetic sporopollenins constitute favorable attributes of a new kind of robust material. This study explores a new design framework of robust materials inspired by natural sporopollenins, and provides insights and reagents for future elucidation and engineering of sporopollenin biosynthesis in plants.

17.
Adv Mater ; 33(30): e2102011, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34110665

RESUMEN

Nature builds biological materials from limited ingredients, however, with unparalleled mechanical performances compared to artificial materials, by harnessing inherent structures across multi-length-scales. In contrast, synthetic material design overwhelmingly focuses on developing new compounds, and fails to reproduce the mechanical properties of natural counterparts, such as fatigue resistance. Here, a simple yet general strategy to engineer conventional hydrogels with a more than 100-fold increase in fatigue thresholds is reported. This strategy is proven to be universally applicable to various species of hydrogel materials, including polysaccharides (i.e., alginate, cellulose), proteins (i.e., gelatin), synthetic polymers (i.e., poly(vinyl alcohol)s), as well as corresponding polymer composites. These fatigue-resistant hydrogels exhibit a record-high fatigue threshold over most synthetic soft materials, making them low-cost, high-performance, and durable alternatives to soft materials used in those circumstances including robotics, artificial muscles, etc.

18.
Chem Rev ; 121(8): 4309-4372, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33844906

RESUMEN

Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?


Asunto(s)
Hidrogeles/química , Polímeros/química , Animales , Sistemas de Liberación de Medicamentos , Humanos , Ingeniería de Tejidos
19.
Adv Funct Mater ; 31(27)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35903441

RESUMEN

Natural microbial sensing circuits can be rewired into new gene networks to build living sensors that detect and respond to disease-associated biomolecules. However, synthetic living sensors, once ingested, are cleared from the gastrointestinal (GI) tract within 48 hours; retaining devices in the intestinal lumen is prone to intestinal blockage or device migration. To localize synthetic microbes and safely extend their residence in the GI tract for health monitoring and sustained drug release, an ingestible magnetic hydrogel carrier is developed to transport diagnostic microbes to specific intestinal sites. The magnetic living hydrogel is localized and retained by attaching a magnet to the abdominal skin, resisting the peristaltic waves in the intestine. The device retention is validated in a human intestinal phantom and an in vivo rodent model, showing that the ingestible hydrogel maintains the integrated living bacteria for up to seven days, which allows the detection of heme for GI bleeding in the harsh environment of the gut. The retention of microelectronics is also demonstrated by incorporating a temperature sensor into the magnetic hydrogel carrier.

20.
Mater Sci Eng C Mater Biol Appl ; 119: 111609, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321653

RESUMEN

Couplants play significant roles in ultrasonography. To ensure imaging quality, it is critical to maintain conformal contact of the couplant with both the skin surface and the ultrasound probe in clinical applications. In addition, either the probe or the couplant should not deform the skin surface significantly, which will result in an overestimated modulus of the tissue for elastography imaging. However, existing liquid gel couplants cannot bear external compressive force, while existing solid gel couplants cannot maintain a conformal contact with skin surface. Especially, the nonconformal contacts and deformation become more severe on body parts of locally high curvatures such as skin tumors, fingers, and elbows. Here we report a bilayer design of couplant for ultrasonography, composing of a stiff layer and a compliant layer of hydrogels. The bilayer hydrogel pad enables it to bear external compression, allowing the probe to move smoothly, conforming high curvature parts and releasing stress concentration. Our clinical experiments further show high quality imaging of thyroid nodules, skin tumors in elbows and fingers using the bilayer hydrogel pad, which represents a promising alternative for a range of applications in ultrasonic diagnosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hidrogeles , Módulo de Elasticidad , Presión , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...